Можно ли создать атомный реактор в домашних условиях? Атомный конструктор: реактор на столе Атомный реактор для дома.

«А за хранение ядерных отходов дома мы получаем скидку по ипотеке», — такова была шутка некоего карикатуриста, не слишком любящего атомную энергетику. Но хотя АЭС на кухне ещё не созданы, похоже, всё идёт к тому. Как вам миниатюрная ядерная станция, предназначенная для групп домов или частных фирм? Её уже можно заказать у производителя. Юридические согласования в своей стране – оставим за рамками рассказа.

Недавно американский консорциум федеральных лабораторий для передачи технологий (FLC) вручил премию Notable Technology Development Award компании Hyperion Power Generation из Санта-Фе. Выдающимся достижением признан Hyperion Power Module — почти домашний энергетический ядерный реактор.

Hyperion — необычайно компактная установка, питаемая низкообогащённым ураном. Она способна выдавать электрическую мощность 25-27 мегаватт, которых хватит на 20 тысяч среднестатистических домохозяйств или не слишком крупное промышленное предприятие. Цена «ядерного» электричества от этого устройства составит 10 центов за киловатт-час, обещают разработчики.

Но, может, сами эти «реакторы будущего» баснословно дороги? Нет. Джон Дил (John Deal), исполнительный директор Hyperion, говорит: «Они будут стоить примерно $25 миллионов. Для сообщества в 10 тысяч домохозяйств это окажется весьма доступным приобретением — всего $2500 на дом».

Помимо стального корпуса Hyperion облачён ещё и в бетонную оболочку. Наружу выходят только несколько труб. Интересно, что для перегрузки ядерного топлива весь реакторный модуль предполагается демонтировать и отвозить на завод-изготовитель, а потом (со свежим «зарядом») – обратно. Благо этот реактор легко транспортировать на грузовике, самолёте или судне. Накладно? Зато очень безопасно. Для конечного пользователя этот агрегат будет «невскрываемым ящиком» (иллюстрация Los Alamos National Laboratory).

Что-то определённо меняется в мире. Вдумайтесь — речь идёт о маленькой, но настоящей АЭС. Вы готовы увидеть такую в соседнем дворе? Впрочем, полюбоваться новинкой не получится, разве что во время монтажа. Ведь Hyperion Power Module должны зарывать в грунт — ради пущей безопасности, разумеется.

Первыми покупателями новинки станут, однако, не эксцентричные владельцы коттеджей в престижных районах (представляете, лениво так бросить в разговоре: «А я вчера портативную АЭС купил...»), а промышленные компании. Hyperion уже получила заказы на 100 своих установок, главным образом от предприятий нефтяного и энергетического комплекса.

Производство модулей Hyperion должно начаться в течение пяти лет. Первый экземпляр уйдёт в Румынию на одно из предприятий чешской компании TES , которая уже приобрела шесть реакторов, что называется, «с ватманского листа» и намечает купить ещё 12. Интерес к Hyperion проявили и на Каймановых островах, в Панаме, на Багамах...

Но это только начало. Hyperion Power Generation намерена открыть три завода в разных частях света, чтобы в период c 2013 по 2023 год выпустить 4000 таких установок.


Атомный реактор в наручных часах? Спокойно – это просто «дизайнерские» часики Radio Active от Tokyoflash. Ныне уже не выпускающиеся. Индикация загрузки активной зоны и уровня излучения отражает часы и минуты (фотографии с сайта tokyoflash.com).

Какой смысл в большом количестве крошечных атомных станций? В оправданности внедрения таких источников энергии в удалённых местностях, даже в совсем небольших поселениях, в высоком темпе строительства (обычную АЭС строят лет 10, портативную, собранную на заводе, смонтируют на месте «на раз-два»), в низкой цене и простоте.

Если привычные атомные электростанции вырабатывают гигаватты энергии, новое поколение малых и, можно даже сказать, миниатюрных АЭС (к которым и относится произведение Hyperion Power Generation) оперирует мощностями, на два-три порядка меньшими.

Такие небольшие реакторы сами по себе — не новость. Достаточно вспомнить стратегические субмарины, авианосцы или ледоколы «на атомном ходу». Но одно дело — флоты, являющиеся «игрушками» гигантской государственной машины, и совсем другое — собственная АЭС, которую может купить какой-нибудь богатый городок вскладчину.

Главное, чтобы городок был прогрессивный и доверял учёным с инженерами. А что утверждают последние?

Полностью саморегулирующаяся система Hyperion обладает внутренне присущей безопасностью. Авторы технологии уверяют, что этот реактор никогда не выйдет на сверхкритический режим и никогда не расплавится от перегрева, а если кто-то преднамеренно повредит оболочку (которую вообще-то предполагается «хоронить» под землю и охранять), крошечное количество активного материала быстро остынет. (При этом из имеющегося в устройстве ядерного топлива нельзя получить уран «оружейных кондиций», подчёркивает компания.)

Внутри основного модуля нет подвижных частей, что повышает надёжность системы. И эта АЭС не нуждается в обслуживании в течение месяцев, а то и лет. Она автоматически настраивает генерируемую мощность в зависимости от текущей нагрузки в сети. А срок работы на одной заправке составляет (по разным данным) от 5 до 10 лет. При этом ядерные отходы за один цикл оказываются по размеру вдвое меньше футбольного мяча.

За десятилетия карьеры Отис Петерсон получил немало наград за разработки не только в ядерной сфере, но и, к примеру, в области лазеров (фото Los Alamos National Laboratory).

Тут пора сказать об изобретателе сверхминиатюрного энергетического реактора. Это доктор Отис Пит Петерсон (Otis «Pete» Peterson) из национальной лаборатории в Лос-Аламосе (Los Alamos National Laboratory). Именно в колыбели атомной бомбы и шла первоначальная работа над установкой, ныне получившей имя Hyperion. Причём дизайн аппарата восходит к проекту едва ли не 50-летней давности, уже доказавшему свою безопасность и простоту использования в роли так называемого учебного реактора.

Помните, в начале мы говорили о призе от консорциума по передаче технологий? Все «секреты» миниатюрной АЭС как раз и были переданы лос-аламосской лабораторией фирме Hyperion, которая получила от государства лицензию на тиражирование и коммерциализацию разработки Петерсона.

Кстати, в том же Лос-Аламосе находится второй офис компании Hyperion, тот, где трудятся разработчики чудо-системы. В столице же штата расположена штаб-квартира фирмы.

Интересно, что Hyperion Power Generation не является первооткрывателем ниши миниатюрных гражданских АЭС. Она лишь являет собой яркий пример набирающего силу нового направления в отрасли, предполагающего, что крошечные и предельно автоматизированные атомные станции, разбросанные по удалённым уголкам мира, помогут и отдельным населённым пунктам, испытывающим трудности с энергообеспечением, и планете в целом — за счёт сокращения выбросов парниковых газов.

Неужели это ренессанс атомной энергетики, проглядывающий из-за пелены общественного недоверия (вызванного, в первую очередь, трагедией Чернобыля)? Мы не возьмёмся утверждать наверняка. Но давайте посмотрим на другие примеры.


В 1960-х годах в обществе наблюдался удивительный оптимизм относительно будущего атомной энергетики. Некоторые грезили даже автомобилями на атомной тяге, а услужливые промышленники подогревали интерес публики «атомными концептами» (таковым был Ford Seattle-ite XXI 1962 года – на снимке). О его истории вы можете (фото с сайта shorey.net).

«Плавучая атомная теплоэлектростанция» (ПАТЭС) — это, конечно, ещё не «домашний реактор» (всё-таки это судно-АЭС будет весить более 20 тысяч тонн), но электрическая выходная мощность в 70 мегаватт позволяет записать российский проект (развивающийся не первый год) в упомянутую выше категорию.

Два реактора на борту «баржи» ПАТЭС, «припаркованной» у берега, должны поставлять тому или иному городу и электричество, и тепло. Конструктивно установка схожа с силовыми установками атомных ледоколов, богатейший опыт эксплуатации которых имеется в нашей стране. Такая станция намного дешевле классической АЭС.

Пилотный образец ПАТЭС уже строится в Северодвинске (где и будет работать). В планах — Певек и Вилючинск.

А ещё просто необходимо вспомнить мини-АЭС Toshiba 4S — действительно крошечный реактор (подземный, капсулированный), способный поставлять в сеть 10 мегаватт.

Японцы давно уже предложили установить такую мини-станцию на Аляске — в городке Галена (Galena), насчитывающем менее 700 жителей. Однако проект Galena Nuclear Power Plant уже не первый год ползёт через всяческие согласования и разрешения.


ПАТЭС и Toshiba 4S (иллюстрации Госкорпорация по атомной энергии России/Севмаш, Toshiba).

Собственно обитатели Галены — за. Городской совет уже не раз высказывался в пользу установки станции. Оно и понятно. Японские инженеры клятвенно заверяют, что безопасность 4S (расшифровывается, к слову, как Super Safe, Small, Simple) беспрецедентно высока (в силу самих особенностей конструкции). Так что опасения по поводу пресловутого взрыва можно положить на самую дальнюю полку и посмотреть на выгоду затеи.

Toshiba поставит реактор бесплатно! Она будет лишь брать с галенцев «оброк» за выработанное электричество: всего-то 5-13 центов за киловатт-час. Если сравнить с нынешними затратами данного поселения на солярку, которую везут за тридевять земель, выбор становится ясен.

Станция 4S должна проработать внушительные 30 лет без перезагрузки топлива (а это металлический сплав урана, плутония и циркония, который ранее тестировался, но никогда не выпускался как коммерческое ядерное горючее). Кстати, для сравнения, реакторы ПАТЭС потребуют перегрузки топлива через 12 лет после запуска.

Toshiba намерена направить заявление в Ядерную регуляторную комиссию США (Nuclear Regulatory Commission) в 2009 году, и, если ответ будет положительным, станция на Аляске может быть запущена в 2012 или 2013 году.

Благотворительность японцев легко объяснима — если проект в Галене окажется успешным, Toshiba попробует продавать 4S по всей Америке.

Да и российская плавучая АЭС вполне может пойти на экспорт (Острова Зелёного Мыса уже проявили интерес). Тут кстати, надо отметить, что российские атомщики пишут: особенно перспективна связка ПАТЭС с опреснительной установкой. Такой автономный комплекс был бы востребован во многих странах.

Показательно: аналогичное применение прочат своему мини-реактору и спецы из Hyperion Power Generation.


АЭС Hyperion в комплекте с опреснительной системой (иллюстрация Hyperion Power Generation).

Эта фирма вообще рассматривает заводы и фабрики лишь как одну часть потенциальных покупателей маленькой АЭС. Жилой сектор – вторая предполагаемая половина.

Уменьшение зависимости от импортной нефти, борьба с глобальным потеплением – всё идёт в ход, чтобы убедить Америку – пришла пора малых ядерных реакторов.

И в этом порыве та же Toshiba вторит заокеанским единомышленникам. Она испытывает прототип ещё более компактной (2 х 6 м) АЭС с выходной мощностью всего 200 киловатт, сообщает Guardian. Такая установка могла бы питать один дом 40 лет.

Любопытно, сколько будут брать с частников за вывоз и захоронение отработанного ядерного топлива? Представляете такую графу в жировке из ДЕЗа?

В последнее время все большее развитие получает концепция автономного энергоснабжения. Будь это загородный дом с его ветряками и солнечными панелями на крыше или деревообрабатывающий завод с отопительным котлом, работающим на отходах производства — опилках, суть не меняется. Мир постепенно приходит к тому, что пора отказываться от централизованного обеспечения теплом и электричеством. Центральное отопление в Европе уже практически не встречается, индивидуальные дома, многоквартирные небоскребы и промышленные предприятия отапливаются самостоятельно. Исключение составляют разве отдельные города северных стран - там централизованное отопление и большие котельные оправданы климатическими условиями.

Что касается автономной электроэнергетики, то к этому все идет - население активно скупает ветряки и солнечные панели. Предприятия ищут способы рационального использования тепловой энергии от технологических процессов, строят собственные тепловые электростанции и тоже скупают солнечные панели с ветряками. Особо повернутые на «зеленых» технологиях даже планируют покрывать солнечными панелями крыши заводских цехов и ангаров.

В конечном итоге это оказывается дешевле, чем покупка необходимых энергетических мощностей из местных энергосетей. Однако, после чернобыльской аварии, все как-то забыли, что самым экологически чистым, дешевым и доступным способом получения тепловой и электрической энергии все равно остается энергия атома. И если на протяжении существования атомной промышленности электростанции с ядерными реакторами всегда ассоциировались с комплексами на гектары площади, огромными трубами и озерами для охлаждения, то целый ряд разработок последних лет призван сломать эти стереотипы.

Сразу несколько компаний заявили что выходят на рынок с «домашними» ядерными реакторами. Миниатюрные станции с размерами от гаражного бокса до небольшого двухэтажного здания готовы поставлять от 10 до 100 МВт в течение 10 лет без дозаправки. Реакторы полностью автономны, безопасны, не требуют обслуживания и по истечении срока службы просто перезаряжаются еще на 10 лет. Чем не мечта для завода по производству утюгов или хозяйственного дачника? Рассмотрим более детально те из них, продажа которых начнется в ближайшие годы.

Toshiba 4S (Super Safe, Small and Simple)

Реактор сконструирован по типу батарейки. Предполагается что такая «батарейка» будет закопана в шахту глубиной 30 метров, а здание над ней будет иметь размеры 2216 11 метров. Не многим больше хорошего загородного дома? Такой станции понадобится обслуживающий персонал, но это все равно не идет в сравнение с десятками тысяч квадратных метров площади и сотнями рабочих на традиционных АЭС. Номинальная мощность комплекса - 10 мегаватт в течение 30 лет без дозаправки.

Реактор работает на быстрых нейтронах. Подобный реактор установлен и действует с 1980 года на Белоярской АЭС в Свердловской области России (реактор БН-600). Принцип действия описан . В японской установке в качестве охлаждающей жидкости использован расплав натрия. Это позволяет работать поднять температуру работы реактора на 200 градусов Цельсия по сравнению с водой и при обычном давлении. Применение воды в таком качестве дало бы рост давления в системе в сотни раз.

Самое важное - стоимость выработки 1 кВт час для данной установки ожидается на уровне от 5 до 13 центов. Разброс обусловлен особенностями национального налогообложения, разной стоимостью переработки ядерных отходов и стоимостью введения в выведения из эксплуатации самой станции.

Первым заказчиком «батарейки» от Toshiba похоже выступит небольшой городок Galena штат Аляска в США. В настоящее время идет согласование разрешительной документации с американскими правительственными агентствами. Партнером компании в США выступает известная нам компания Westinghouse , впервые поставившая на украинскую АЭС топливные сборки альтернативные российским ТВЭЛ.

Hyperion Power Generation и реактор Hyperion

Эти американские ребята похоже первыми выйдут на коммерческий рынок миниатюрных ядерных реакторов. Компания предлагает установки от 70 до 25 мегаватт стоимостью примерно по $25-30 миллионов за штуку. Ядерные установки Hyperion могут использоваться как для генерации электроэнергии так и для отопления. Состоянием на начало 2010 года уже поступило более 100 заказов на станции разной мощности, при чем как от частных лиц, так и от государственных компаний. Планируется даже вынести производство готовых модулей за пределы США, построив заводы в Азии и Западной Европе.

Реактор работает на том же принципе, что и большинство современных реакторов в атомных электростанциях. Читать . Наиболее близкими по принципу действия являются самые распространенные российские реакторы типа ВВЭР и силовые установки, применяемы на атомных подводных лодках проекта 705 «Лира» (NATO - “Alfa”) . Американский реактор практически является сухопутной версией реакторов, устанавливаемы на указанных АПЛ, кстати - самых быстрых подводных лодок своего времени.

В качестве топлива используется нитрид урана , который имеет более высокую теплопроводность по сравнению с традиционным для реакторов ВВЭР керамическим оксидом урана. Это позволяет работать при температуре на 250-300 градусов Цельсия выше, чем водо-водяные установки, что повышает эффективность работы паровых турбин элеткрогенераторов. Здесь все просто - чем выше температура реактора, тем выше температура пара и, как следствие, выше КПД паровой турбины.

В качестве охлаждающей «жидкости» используется свинцово-висмутовый расплав, аналогичный таковому на советских АПЛ. Расплав проходит через три теплообменных контура, снижая температуру с 500 градусов Цельсия до 480. Рабочим телом для турбины могут служить как водяной пар так и перегретый углекислый газ.

Установка с топливом и системой охлаждения имеет массу всего в 20 тонн и рассчитана на 10 лет работы на номинальной мощности в 70 мегаватт без дозаправки. Впечатляют действительно миниатюрные размеры - реактор имеет всего 2.5 метра в высоту и 1.5 метра в ширину! Вся система может перевозиться на грузовиках или железнодорожным транспортом, являясь абсолютным коммерческим мировым рекордсменом по соотношению мощностьмобильность.

По приезду на место, «бочка» с реактором просто закапывается. Доступ к ней или какое-либо обслуживание не предполагается вообще. По истечении гарантийного срока сборка выкапывается и отправляется на завод производителя для перезаправки. Особенности свинцово-висмутового охлаждения дают огромное преимущество в безопасности - не возможен перегрев и взрыв (не растет давление с ростом температуры). Также, при охлаждении сплав застывает, а сам реактор превращается в изолированную толстым слоем свинца железную болванку, не боящуюся механических воздействий. Кстати, именно невозможность работы на малых мощностях (в следствие застывания охлаждающего сплава и автоматического отключения), явилась причиной отказа от дальнейшего использования свинцово-висмутовых установок на АПЛ. По этой же причине - это самые безопасные реакторы из всех, когда либо устанавливавшихся на АПЛ всех стран.

Изначально миниатюрные атомные электростанции разрабатывались компанией Hyperion Power Generation для нужд добывающей промышленности, а именно для переработки горючих сланцев в синтетическую нефть. Оценочные запасы синтетической нефти в горючих сланцах , доступных для переработки имеющимися на сегодня технологиями оценивается в 2.8.-3.3 триллиона баррелей. Для сравнения - запасы «жидкой» нефти в скважинах оцениваются всего в 1.2 триллиона баррелей. Однако процесс переработки сланцев в нефть требует их нагрева с последующим улавливанием испарений, которые затем конденсируются в нефть и побочные продукты. Понятно, что для нагрева нужно где-то брать энергию. По этой причине добыча нефти из сланцев считается экономически нецелесообразной по сравнению с ее импортом у стран ОПЕК. Так что будущее своего продукта компания видит в разных сферах применения.

Например, в качестве мобильной электростанции для нужд военных баз и аэродромов. Здесь тоже интересные перспективы. Так, при ведении мобильных боевых действий, когда войска действуют из так называемых опорных пунктов в определенных регионах, эти станции могли бы питать инфраструктуру «баз». Прямо как в компьютерных стратегиях. С той лишь разницей, что когда задача в регионе выполнена, электростанцию грузят в транспортное средство (самолет, грузовой вертолет, грузовые автомобили, поезд, корабль) и увозят на новое место.

Другое применение в военной сфере - стационарное питание постоянных военных баз и аэродромов. При авиа налете или ракетном ударе база с подземной атомной электростанцией, не требующей обслуживающего персонала, с большей вероятностью сохранит боеспособность. Таким же образом можно питать группы объектов социальной инфраструктуры - системы вобоснабжения городов, административных объектов, больниц.

Ну и промышленно-гражданское применение - системы электропитания небольших городов и поселков, отдельных предприятий или их групп, системы отопления. Ведь эти установки прежде всего вырабатывают тепловую энергию и в холодных регионах планеты могут составить ядро централизованных систем отопления. Так же перспективным компания считает применение таких мобильных электростанций на опреснительных установках в развивающихся странах.

SSTAR (small, sealed, transportable, autonomous reactor)

Маленький, запечатанный, передвижной автономный реактор - проект, разрабатываемый в Lawrence Livermore National Laboratory , США. По принципу действия схож с Hyperion, только в качестве топлива использует Уран-235. Должен иметь срок годности в 30 лет при мощности от 10 до 100 мегаватт.

Размеры должны составлять 15 метров в высоту и 3 в ширину при весе реактора в 200 тонн. Эта установка изначально рассчитывается для применения в недоразвитых странах по схеме лизинга. Таким образом, повышенное внимание уделяется невозможности разобрать конструкцию и извлечь из нее что-либо ценное. Ценное - это уран-238 и оружейный плутоний, которые вырабатываются по мере истечения срока годности.

По окончании действия договора лизинга, получатель должен будет вернуть эту установку в США. Только мне кажется, что это — мобильные заводы по производству оружейного плутония за чужие деньги? 🙂 В прочем, американское государство здесь не продвинулось дальше исследовательских работ, пока нет даже прототипа.

Подводя итог, следует отметить, что пока наиболее реальной является разработка от Hyperion и первые поставки намечены на 2014 год. Думаю, можно ожидать дальнейшего наступления «карманных» АЭС, тем более что похожие работы по созданию подобных станций ведут и другие предприятия, в том числе такие гиганты как Mitsubishi Heavy Industries. А вообще, миниатюрный ядерный реактор — это достойный ответ на всевозможную приливно-отливную муть и прочие невероятно "зеленые" технологии. Похоже, в ближайшем времени мы сможем наблюдать, как снова военные технологии переходят на гражданскую службу.

1. Свободнопоршневой двигатель Стирлинга работает от нагревания «атомным паром» 2. Индукционный генератор дает около 2 Вт электроэнергии для питания лампы накаливания 3. Характерное голубое свечение — это черенковское излучение электронов, выбитых из атомов гамма-квантами. Может служить в качестве отличного ночника!

Для детей от 14 лет Юный исследователь сможет самостоятельно собрать пусть и маленький, но настоящий ядерный реактор, узнать, что такое мгновенные и запаздывающие нейтроны, и увидеть динамику разгона и торможения цепной ядерной реакции. Несколько простых опытов с гамма-спектрометром позволят разобраться с наработкой различных продуктов деления и поэкспериментировать с воспроизводством топлива из модного ныне тория (кусочек сульфида тория-232 прилагается). Входящая в комплект книга «Основы ядерной физики для самых маленьких» содержит описание более 300 опытов с собранным реактором, так что простор для творчества огромен

Исторический прототип Набор Atomic Energy Lab (1951) давал возможность школьникам приобщиться к самой передовой области науки и технологии. Электроскоп, камера Вильсона и счетчик Гейгера-Мюллера позволяли провести множество интереснейших опытов. Но, конечно, не настолько интересных, как сборка действующего реактора из российского набора «Настольная АЭС»!

В 1950-х годах, с появлением атомных реакторов, перед человечеством, казалось бы, замаячили блестящие перспективы решения всех энергетических проблем. Инженеры-энергетики проектировали атомные электростанции, судостроители — атомные электроходы, и даже автоконструкторы решили присоединиться к празднику и использовать «мирный атом». В обществе возник «атомный бум», и промышленности стало не хватать квалифицированных специалистов. Требовался приток новых кадров, и была развернута серьезная образовательная компания не только среди студентов университетов, но и среди школьников. Например, A.C. Gilbert Company выпустила в 1951 году детский набор Atomic Energy Lab, содержащий несколько небольших радиоактивных источников, необходимые приборы, а также образцы урановой руды. Этот «наисовременнейший научный набор», как было написано на коробке, позволял «юным исследователям провести более 150 захватывающих научных экспериментов».

Кадры решают все

За прошедшие полвека ученые получили несколько горьких уроков и научились строить надежные и безопасные реакторы. И хотя сейчас в этой области наблюдается спад, вызванный недавней аварией на Фукусиме, вскоре он вновь сменится подъемом, и АЭС по‑прежнему будут рассматриваться как чрезвычайно перспективный способ получения чистой, надежной и безопасной энергии. Но уже сейчас в России чувствуется дефицит кадров, как ив 1950-х. Чтобы привлечь школьников и повысить интерес к атомной энергетике, Научно-производственное предприятие (НПП) «Экоатомконверсия», взяв пример с A.C. Gilbert Company, выпустила образовательный набор для детей от 14 лет. Разумеется, наука за эти полвека не стояла на месте, поэтому, в отличие от своего исторического прототипа, современный набор позволяет получить намного более интересный результат, а именно — собрать на столе самый настоящий макет атомной электростанции. Разумеется, действующий.

Грамотность с пеленок

«Наша компания родом из Обнинска- города, где атомная энергия знакома и привычна людям чуть ли не с детского сада, — объясняет «ПМ» научный руководитель НПП «Экоатомконверсия» Андрей Выхаданко. — И все понимают, что бояться ее совершенно не надо. Ведь по‑настоящему страшна лишь неизвестная опасность. Поэтому мы и решили выпустить этот набор для школьников, который позволит им вдоволь поэкспериментировать и изучить принципы работы атомных реакторов, не подвергая себя и окружающих серьезному риску. Как известно, знания, полученные в детстве, самые прочные, так что выпуском этого набора мы надеемся значительно понизить вероятность повторения Чернобыля или

Фукусимы в будущем».

Ненужный плутоний

За годы работы множества АЭС скопились тонны так называемого реакторного плутония. Он состоит в основном из оружейного Pu-239, содержащего около 20% примеси других изотопов, в первую очередь Pu-240. Это делает реакторный плутоний абсолютно непригодным для создания ядерных бомб. Отделение примеси оказывается весьма сложным, так как разница масс между 239-м и 240-м изотопами — всего 0,4%. Изготовление ядерного топлива с добавкой реакторного плутония оказалось технологически сложным и экономически невыгодным, так что этот материал остался не у дел. Именно «бросовый» плутоний и использован в «Наборе юного атомщика», разработанном НПП «Экоатомконверсия».

Как известно, для начала цепной реакции деления ядерное топливо должно иметь определенную критическую массу. Для шара из оружейного урана-235 она составляет 50 кг, из плутония-239 — только 10. Оболочка из отражателя нейтронов, например бериллия, может снизить критическую массу в несколько раз. А использование замедлителя, как в реакторах на тепловых нейтронах, снизит критическую массу более чем в десять раз, до нескольких килограммов высокообогащенного U-235. Критическая масса Pu-239 и вовсе составит сотни граммов, и именно такой сверхкомпактный реактор, умещающийся на столе, разработали в «Экоатомконверсии».

Что в сундучке

Упаковка набора скромно оформлена в черно-белых тонах, и лишь неяркие трехсегментные значки радиоактивности несколько выделяются на общем фоне. «Никакой опасности на самом деле нет, — говорит Андрей, указывая на слова «Совершенно безопасно!», написанные на коробке. — Но таковы требования официальных инстанций». Коробка тяжеленная, что неудивительно: в ней находится герметичный транспортировочный свинцовый контейнер с тепловыделяющей сборкой (ТВС) из шести плутониевых стержней с циркониевой оболочкой. Помимо этого набор включает внешний корпус реактора из термостойкого стекла с химической закалкой, крышку корпуса со стеклянным окном и гермовводами, корпус активной зоны из нержавеющей стали, подставку под реактор, управляющий стержень-поглотитель из карбида бора. Электрическая часть реактора представлена свободнопоршневым двигателем Стирлинга с соединительными полимерными трубками, маленькой лампой накаливания и проводами. В комплект также входят килограммовый пакет с порошком борной кислоты, пара защитных костюмов с респираторами и гамма-спектрометр со встроенным гелиевым детектором нейтронов.

Постройка АЭС

Сборка действующего макета АЭС по прилагаемому руководству в картинках очень проста и занимает менее получаса. Надев стильный защитный костюм (он нужен только на время сборки), вскрываем герметичную упаковку с ТВС. Затем вставляем сборку внутрь корпуса реактора, накрываем корпусом активной зоны. Под конец защелкиваем сверху крышку с гермовводами. В центральный нужно вставить до конца стержень-поглотитель, а через любой из двух других заполнить активную зону дистиллированной водой до черты на корпусе. После заполнения к гермовводам подключаются трубки для пара и конденсата, проходящие через теплообменник двигателя Стирлинга. Сама АЭС на этом закончена и готова к запуску, остается лишь поместить ее на специальную подставку в аквариум, заполненный раствором борной кислоты, который отлично поглощает нейтроны и защищает юного исследователя от нейтронного облучения.

Три, два, один — пуск!

Подносим гамма-спектрометр с датчиком нейтронов вплотную к стенке аквариума: небольшая часть нейтронов, не представляющая угрозы для здоровья, все-таки выходит наружу. Медленно поднимаем регулировочный стержень до начала быстрого роста потока нейтронов, означающего запуск самоподдерживающейся ядерной реакции. Остается только дождаться выхода на нужную мощность и на 1 см по меткам вдвинуть стержень назад, чтобы скорость реакции стабилизировалась. Как только начнется кипение, в верхней части корпуса активной зоны появится прослойка пара (перфорация в корпусе не позволяет этой прослойке оголить плутониевые стержни, что могло бы привести к их перегреву). Пар по трубке идет вверх, к двигателю Стирлинга, там он конденсируется и стекает по выходной трубке вниз внутрь реактора. Разность температур между двумя концами двигателя (один нагревается паром, а другой охлаждается комнатным воздухом) преобразуется в колебания поршня-магнита, а тот, в свою очередь, наводит переменный ток в окружающей двигатель обмотке, зажигая атомный свет в руках юного исследователя и, как надеются разработчики, атомный интерес в его сердце.

Примечание редакции: данная статья опубликована в апрельском номере журнала и является первоапрельским розыгрышем.

(Первоапрельские новости, ничего общего с действительным положением вещей не имеющие.)

Мы стремимся поставлять своим клиентам самое лучшее, самое современное, самое технологичное оборудование. И сейчас рады вам сообщить, что ассортимент «Русской Генераторной Компании» пополнился уникальной, не имеющей аналогов новинкой - первым в мире Портативным Атомным Генератором ПАГ-300 -1АПР . Работы над проектом по созданию новинки велись в течение пяти лет, нашим инженерам активно оказывали помощь сотрудники РОСАТОМ.

Что же собой представляет новинка? Это достаточно компактное устройство, его габариты сравнимы с размером обеденного стола, а масса не достигает и 5 т. Оснастив ПАГ комплектом колес и ручек, вы сможете с удобством и легкостью перевозить его с объекта на объект. Благодаря использованию изотопов урана-325 в качестве топлива, ПАГ сможет в течение трех с лишним лет обеспечивать электроэнергией сеть с большой нагрузкой. И это - без дозаправки, в автономном режиме. При этом его мощность достигает 330 кВт, что на порядок больше чем могут предложить флагманские модели дизельных и газовых аналогов. Это - отличный способ обеспечить электричеством не только квартиру или отдельно стоящий дом, но и коттеджный поселок, промышленный объект, подземный бункер.

Разумеется, весьма актуален вопрос безопасности. Хотим вас заверить, что радиационный фон вокруг установки не выходит за пределы допустимой нормы: ПАГ гарантированно не станет дополнительным источником заражения среды и причиной развития мутаций. Более того, за счет отсутствия в ее составе двигателя внутреннего сгорания такая установка более экологична, чем бензо- и дизельгенераторы!

Основные характеристики ПАГ-300-1АПР
Тип электростанции атомная
Тип запуска электронный
Число фаз 3 (380 вольт)
Двигатель и топливо
Двигатель ПАД-300-1АПР
Тип охлаждения D 2 O (тяжелая вода)
Марка топлива изотопы урана 235
Время автономной работы 3.2 года
Генератор
Тип генератора синхронный
Бесщеточный генератор да
Класс защиты генератора IP66
Активная мощность 300 кВт
Максимальная мощность 330 кВт
Конструкция и особенности
Уровень шума 5 дБ
Колеса нет
Защита от перегрузок есть
Число розеток 380 В 6
Габариты (ШхВхГ) 2400x910x860 мм
Вес 4563 кг
Особенности комплект колёс и ручек приобретается отдельно

Узнать больше подробностей о ПАГ-300-1АПР вы можете у наших менеджеров или представителей госкорпорации «Росатом». Оптовым покупателям мы предоставим скидку!

Вы, конечно, поняли что это первоапрельская шутка:) А вот здесь реально существовавшая

Представляю вам статью о том, как можно изготовить термоядерный реактор своими руками !

Но сначала несколько предупреждений:

Эта самоделка использует при своей работе опасное для жизни напряжение. Для начала убедитесь, что вы ознакомлены с правилами техники безопасности при работе с высоким напряжением или имеете квалифицированного друга – электрика в качестве советчика.

При работе реактора будут излучаться потенциально опасные уровни рентгеновских лучей. Свинцовое экранирование смотровых окон является обязательным!

Дейтерий, что будет использоваться в поделке – взрывоопасный газ. Поэтому особое внимание следует уделить проверке на герметичность топливного отсека.

При работе соблюдайте правила ТБ, не забывайте надевать спецодежду и средства индивидуальной защиты.

Список необходимых материалов:

  • Вакуумная камера;
  • Форвакуумный насос;
  • Диффузионный насос;
  • Блок питания высокого напряжения, способный выдавать 40 кВ 10 мА. Должна присутствовать отрицательная полярность;
  • Высоковольтный делитель – зонд, с возможностью подключения к цифровому мультиметру;
  • Термопара или баратрон;
  • Детектор нейтронного излучения;
  • Счётчик Гейгера;
  • Газ дейтерий;
  • Большой балластный резистор в диапазоне 50-100 кОм и длиной около 30 см;
  • Камера и телевизионный дисплей для отслеживания ситуации внутри реактора;
  • Стекло покрытое свинцом;
  • Инструменты общего плана ( , и т.д).

Шаг 1: Сборка вакуумной камеры

Для проекта потребуется изготовить вакуумную камеру высокого качества.

Приобретите две полусферы из нержавеющей стали, фланцы для вакуумных систем. Просверлим отверстия для вспомогательных фланцев, а затем сварим всё это вместе. Между фланцами располагаются уплотнительные кольца из мягкого металла. Если вы раньше никогда не варили, было бы разумно, чтобы кто-то с опытом сделал эту работу за вас. Поскольку сварные швы должны быть безупречны и без дефектов. После тщательно очистите камеру от отпечатков пальцев. Поскольку они будут загрязнять вакуум и будет трудно поддерживать стабильность плазмы.

Шаг 2: Подготовка насоса высокого вакуума

Установим диффузионный насос. Заполним его качественным маслом до положенного уровня (уровень масла указан в документации), закрепим выпускной клапан, который затем соединим с камерой (см схему). Прикрепим форвакуумный насос. Насосы высокого вакуума не способны работать с атмосферы.

Подключим воду, для охлаждения масла в рабочей камере диффузионного насоса.

Как только всё будет собрано, включим форвакуумный насос и подождём, пока объём не будет откачан на предварительный вакуум. Далее готовим к запуску насос высокого вакуума путём включения «котла». После того, как он прогреется (может занять некоторое время), вакуум станет быстро падать.

Шаг 3: «Венчик»

Венчик будет присоединяться к проводам высокого напряжения, которые будут заходить в рабочий объём через сильфон. Лучше всего использовать вольфрамовую нить, так как она имеет очень высокую температуру плавления, и будет оставаться целой в течение многих циклов.

Из вольфрамовой нити необходимо сформировать «сферический венчик» примерно 25-38 мм в диаметре (для рабочей камеры диаметром 15-20 см) для нормальной работы системы.

Электроды, к которым крепится вольфрамовая проволока должны быть рассчитаны на напряжение порядка 40 кВ.

Шаг 4: Монтаж газовой системы

Дейтерий используется в качестве топлива для термоядерного реактора. Вам нужно будет приобрести бак для этого газа. Газ добывается из тяжёлой воды путем электролиза с помощью небольшого аппарата Гофмана.

Присоединим регулятор высокого давления, непосредственно в бак, добавим микродозаторный игольчатый клапан, а затем прикрепим его к камере. Шаровой клапан следует установить между регулятором и игольчатым клапаном.

Шаг 5: Высокое напряжение

Если вы можете приобрести блок питания, подходящий для использования в термоядерном реакторе, то проблем возникнуть не должно. Просто возьмите выходной отрицательный 40 кВ электрод и прикрепите его к камере с большим балластным резистором высокого напряжения 50-100 кОм.

Проблема заключается в том, что часто затруднительно (если не невозможно) найти соответствующий источник постоянного тока с ВАХ (вольт-амперной характеристикой) которая полностью бы соответствовала заявленным требованиям ученого-любителя.

На фото представлена пара высокочастотных ферритовых трансформаторов, с 4-ступенчатым множителем (находится за ними).

Шаг 6: Установка детектора нейтронов

Нейтронное излучение является побочным продуктом реакции синтеза. Его можно фиксировать тремя различными приборами.

Пузырчатый дозиметр небольшое устройство с гелем, в котором формируются пузыри, во время ионизации нейтронным излучением. Недостатком является то, что это интегративный детектор, который сообщает общее количество выбросов нейтронов за время, что он использовался (невозможно получить данные о мгновенной скорости нейтронов). Кроме того, такие детекторы довольно трудно купить.

Активное серебро замедлителем [парафином, водой и т.д.], расположенное вблизи реактора становится радиоактивным, испуская приличные потоки нейтронов. Процесс имеет короткий период полураспада (только несколько минут), но если вы поставите счетчик Гейгера рядом с серебром, то результат можно документально зафиксировать. Недостатком этого метода является то, что серебро требует достаточно большого потока нейтронов. Кроме того, систему довольно трудно откалибровать.

GammaMETER . Трубы могут быть заполнены гелий-3. Они похожие на счетчик Гейгера. При прохождении нейтроны через трубку происходит регистрация электрических импульсов. Трубка окружена 5 см «замедляющего материала». Это наиболее точное и полезное устройство регистрации нейтронов, однако, стоимость новой трубки, запредельна для большинства людей, и они чрезвычайно редки на рынке.

Шаг 7: Запускаем реактор

Пришло время включить реактор (не забудьте установить смотровые стекла покрытые свинцом!). Включите форвакуумный насос и подождите, пока объём камеры не будет откачен на предварительный вакуум. Запустите диффузионный насос и подождите, пока он полностью разогреется и достигнет рабочего режима.

Перекройте доступ вакуумной системы к рабочему объёму камеры.

Чуть-чуть приоткройте игольчатый клапан в баке дейтерия.

Поднимайте высокое напряжение, пока вы не увидите плазму (она сформируется при 40 кВ). Помните о правилах электробезопасности.

Если всё пойдет хорошо, вы зафиксируете всплеск нейтронов.

Требуется много терпение, чтобы повысить давление до надлежащего уровня, но после того, как всё получится, управлять им станет довольно просто.

Спасибо за внимание!