I и II экваториальные системы координат Ось мира и небесный экватор – основные элементы экваториальных систем Счет времени Создание звездных каталогов. Презентация к уроку астрономии "Звездное небо

Небесная сфера

Когда мы наблюдаем небо, все астрономические объекты кажутся расположенными на куполообразной поверхности, в центре которой находится наблюдатель.

Этот воображаемый купол образует верхнюю половину воображаемой сферы, которую называют «небесной сферой».


Элементы небесной сферы


Р – северный полюс мира

Истинный горизонт

N – точка севера

S – точка юга

Небесный меридиан

Р ’ – южный полюс мира

Полуденная линия

Z’ - надир


Небесная сфера играет фундаментальную роль при указании положения астрономических объектов.

Горизонтальные координаты

В горизонтальной системе координат положение объекта определяется относительно горизонта и относительно направления на юг (S).


Вертикал – круг высоты


Горизонтальные координаты

Положение звезды М задается ее высотой h (угловое расстояние от горизонта вдоль большого круга – вертикала) и азимутом А (измеренное к западу угловое расстояние от точки юга до вертикала).

Высота изменяется: от 0 ° до +90 ° (над горизонтом) от 0 ° до -90 ° (под горизонтом)

Азимут изменяется: от 0 ° до 360 °


Кульминации небесных тел

Двигаясь вокруг оси мира, светила описывают суточные параллели.

Кульминация – прохождение светила через небесный меридиан.



Кульминации небесных тел

В течении суток происходит две кульминации: верхняя и нижняя

У незаходящего светила обе кульминации над горизонтом. У невосходящего светила обе кульминации под горизонтом.


Но для некоторых задач астрономии система координат должна быть независимой от положения наблюдателя и времени суток. Такую систему называют «экваториальной».

Экваториальные координаты

Из-за вращения Земли звезды постоянно перемещаются относительно горизонта и сторон света, а их координаты в горизонтальной системе изменяются.


Небесный экватор

Склонение

α – прямое восхождение

Точка весеннего равноденствия

Круг склонения


Экваториальные координаты

Эклиптика - видимый путь Солнца по небесной сфере.


Экваториальные координаты

«Склонение» звезды измеряется ее угловым расстоянием к северу или югу от небесного экватора.

«Прямое восхождение» измеряется от точки весеннего равноденствия до круга склонения звезды.

«Прямое восхождение» изменяется от 0 ° до 360 ° или от 0 до 24 часов.


Эклиптика

Ось вращения Земли наклонена примерно на 23,5° относительно перпендикуляра, проведенного к плоскости эклиптики.

Пересечение этой плоскости с небесной сферой дает круг – эклиптику, видимый путь Солнца за год.


Эклиптика

Каждый год в июне Солнце высоко поднимается на небе в Северном полушарии, где дни становятся длинными, а ночи короткими.

Переместившись на противоположную сторону орбиты в декабре у нас на севере дни становятся короткими, а ночи – длинными.


Эклиптика

Всю эклиптику Солнце проходит за год, перемещаясь за сутки на 1 ° , побывав в течение месяца в каждом из 12 зодиакальных созвездий.


Астрометрия – древнейший раздел астрономии Цель: изучение метрических особенностей Вселенной Создание в пространстве инерциальной системы координат Основные результаты: 1. шкала точного времени 2. данные о положении оси вращения Земли в пространстве и теле Земли; 3. система астрономических постоянных, 4. звездные каталоги (небесные координаты сотен тысяч светил) 5. каталоги пунктов земной поверхности, в которых определены астрономические координаты 6. каталоги точек с измеренными планетографическими координатами на поверхности Луны, Марса, Меркурия и других планет








I экваториальная система Склонение δ (полярное расстояние p) + 0 – 90 - к северу от небесного экватора к югу от небесного экватора Светила с одинаковым склонением находятся на одной суточной параллели δ + p = 90


I экваториальная система часовой угол t от наивысшей точки небесного экватора Н к западу (H-K) t = 0 – верхняя кульминация ВК t = 12 - нижняя кульминация НК Точка Н не участвует во вращении небесной сферы ВК Солнца – истинный полдень НК Солнца – истинная полночь


II экваториальная система Эклиптика – видимый путь Солнца среди звезд Склонение δ + 0 – 90 - к северу от небесного экватора к югу от небесного экватора Прямое восхождение α – от точки весеннего равноденствия ϒ на восток Точка ϒ участвует во вращении небесной сферы ϒ


Связь горизонтальных и экваториальных координат






Современные каталоги – точность ±0,1, радиоинтерферометрия - ±0,001 Боннское обозрение (Bonner Durchmusterung, BD) - Ф. Аргеландер (). Положения звезд (BD +7°1226) Карта неба (Carte –du ciel, или Astrographic Catalogue) звезды (миллионы!)с фотопластинок SAO (Смитсоновской астрофизической обсерватории) звезд Каталог Генри Дрэпера (Henry Draper Catalogue of Stellar Spectra, HD) Новые общие каталоги (GC, NGC) Йельские зонные каталоги (Yale Zone Catalogues) Паломарский обзор (Palomar Survey)


Работают астрометрические спутники Каталоги Hipparcos и Tycho звёзд до 8 величины свыше 1 млн до 11,5 величины высокоточные данные о координатах, расстояниях и собственных движениях звёзд
Международная небесная система координат ICRS The Internetional Celestial Reference System реализована в виде двух опорных координатных систем: в радиодиапазоне (ICRF) в видимом диапазоне (HCRF). Независима от вращения Земли Центр – в барицентре Солнечной системы Точность определений 0.05 ʺ

ПРЕЗЕНТАЦИЯ Сухоцкого Никиты Анастасии Бойчук Учеников 11-а класса Системы небесных координат Системы небесных координат используются в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, системы небесных координат являются сферическими системами координат, в которых третья координата - расстояние - часто неизвестна и не играет роли. Эти системы отличаются друг от друга выбором основной плоскости и началом отсчёта. В зависимости от стоящей задачи, может быть более удобным использовать ту или иную систему. Наиболее часто используются горизонтальная и экваториальные системы координат. Реже - эклиптическая, галактическая и другие. Горизонтальная система координат В этой системе основной плоскостью является плоскость математического горизонта. Одной координатой при этом является либо высота светила h, либо его зенитное расстояние z. Другой координатой является азимут A. Высотой h светила называется дуга вертикального круга от математического горизонта до светила, или угол между плоскостью математического горизонта и направлением на светило.Высоты отсчитываются в пределах от 0° до +90° к зениту и от 0° до −90° к надиру. Зенитным расстоянием z светила называется дуга вертикального круга от зенита до светила, или угол между отвесной линией и направлением на светило.Зенитные расстояния отсчитываются в пределах от 0° до 180° от зенита к надиру. Азимутом A светила называется дуга математического горизонта от точки юга до вертикального круга светила, или угол между полуденной линией и линией пересечения плоскости математического горизонта с плоскостью вертикального круга светила.Азимуты отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от точки юга, в пределах от 0° до 360°. Иногда азимуты отсчитываются от 0° до +180° к западу и от 0° до −180° к востоку. (В геодезии азимуты отсчитываются от точки севера.) Первая экваториальная система координат: В этой системе основной плоскостью является плоскость небесного экватора. Одной координатой при этом является склонение δ (реже - полярное расстояние p). Другой координатой - часовой угол t. Склонением δ светила называется дуга круга склонения от небесного экватора до светила, или угол между плоскостью небесного экватора и направлением на светило.Склонения отсчитываются в пределах от 0° до +90° к северному полюсу мира и от 0° до −90° к южному полюсу мира. Полярным расстоянием p светила называется дуга круга склонения от северного полюса мира до светила, или угол между осью мира и направлением на светило. Полярные расстояния отсчитываются в пределах от 0° до 180° от северного полюса мира к южному. Часовым углом t светила называется дуга небесного экватора от верхней точки небесного экватора (то есть точки пересечения небесного экватора с небесным меридианом) до круга склонения светила, или двугранный угол между плоскостями небесного меридиана и круга склонения светила.Часовые углы отсчитываются в сторону суточного вращения небесной сферы, то есть к западу от верхней точки небесного экватора, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере). Иногда часовые углы отсчитываются от 0° до +180° (от 0h до +12h) к западу и от 0° до −180° (от 0h до −12h) к востоку. Вторая экваториальная система координат В этой системе, как и в первой экваториальной, основной плоскостью является плоскость небесного экватора, а одной координатой - склонение β (реже - полярное расстояние p). Другой координатой является прямое восхождение α. Прямым восхождением α светила называется дуга небесного экватора от точки весеннего равноденствия до круга склонения светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга склонения светила. Прямые восхождения отсчитываются в сторону, противоположную суточному вращению небесной сферы, в пределах от 0° до 360° (в градусной мере) или от 0h до 24h (в часовой мере). Эклиптическая система координат: В этой системе основной плоскостью является плоскость эклиптики. Одной координатой при этом является эклиптическая широта β, а другой - эклиптическая долгота λ. Эклиптической широтой β светила называется дуга круга широты от эклиптики до светила, или угол между плоскостью эклиптики и направлением на светило.Эклиптические широты отсчитываются в пределах от 0° до +90° к северному полюсу эклиптики и от 0° до -90° к южному полюсу эклиптики. Эклиптической долготой λ светила называется дуга эклиптики от точки весеннего равноденствия до круга широты светила, или угол между направлением на точку весеннего равноденствия и плоскостью круга широты светила. Эклиптические долготы отсчитываются в сторону видимого годового движения Солнца по эклиптике, то есть к востоку от точки весеннего равноденствия в пределах от 0° до 360°. Галактическая система координат В этой системе основной плоскостью является плоскость нашей Галактики. Одной координатой при этом является галактическая широта b, а другой - галактическая долгота l. Галактической широтой b светила называется дуга круга галактической широты от эклиптики до светила, или угол между плоскостью галактического экватора и направлением на светило. Галактические широты отсчитываются в пределах от 0° до +90° к северному галактическому полюсу и от 0° до -90° к южному галактическому полюсу. Галактической долготой l светила называется дуга галактического экватора от точки начала отсчёта C до круга галактической широты светила, или угол между направлением на точку начала отсчёта C и плоскостью круга галактической широты светила. Галактические долготы отсчитываются против часовой стрелки, если смотреть с северного галактического полюса, то есть к востоку от точки начала отсчёта C в пределах от 0° до 360°. Точка начала отсчёта C находится вблизи направления на галактический центр, но не совпадает с ним, поскольку последний, вследствие небольшой приподнятости Солнечной системы над плоскостью галактического диска, лежит примерно на 1° к югу от галактического экватора. Точку начала отсчёта C выбирают таким образом, чтобы точка пересечения галактического и небесного экваторов с прямым восхождением 280° имела галактическую долготу 32,93192° (на эпоху 2000). Презентация выполнена учащимися 11-А класса Запорожской гимназии № 31 Сухоцким Никитой и Бойчук Анастасией 2009 г.

Слайд 2

Раздел астрономии, в котором вводят системы астрономических координат и определяют положения и скорости движения небесных тел по отношению к этим системам, называют астрометрией. Это самая древняя часть астрономии.

Слайд 3

− прямоугольные координаты точки Р

− сферические координаты точки Р

Слайд 4

Горизонтальная система координат

При построении любой системы небесных координат на небесной сфере выбирается большой круг (основной круг системы координат) и две диаметрально противоположные точки на оси, перпендикулярной к плоскости этого круга (полюса системы координат).

Слайд 5

В качестве основного круга горизонтальной системы координат принимают истинный горизонт, полюсами служат зенит (Z) и надир (Z1), через которые проводятся большие полукруги, называемые кругами высоты или вертикалами.

  • Вертикал
  • Зенит
  • Надир
  • Небесное светило
  • Истинный горизонт
  • Слайд 6

    Мгновенное положение светила M относительно горизонта и небесного меридиана определяется двумя координатами: высотой(h) и азимутом (A), которые называются горизонтальными.

    • Азимут
    • Высота
    • Зенитное расстояние
  • Слайд 7

    Южная половина небесного меридиана (ZSZ1) есть начальный вертикал, а круги высоты ZEZ1и ZWZ1, проходящие через точки востока E и запада W, называются первым вертикалом. Малые круги (ab, cd), параллельные плоскости истинного горизонта, называются кругами равной высоты или альмукантаратами.

    Слайд 8

    В течение суток азимут и высота светил непрерывно меняются. Поэтому горизонтальная система координат непригодна для составления звездных карт и каталогов. Для этой цели нужна система, в которой вращение небесной сферы не влияет на значения координат светил.

    Слайд 9

    Экваториальная система координат

    Для неизменности сферических координат нужно, чтобы координатная сетка вращалась вместе с небесной сферой. Этому условию удовлетворяет экваториальная система координат.

  • Слайд 10

    Основная плоскость в этой системе – небесный экватор, а полюса – северный и южный полюсы мира.

    • Небесный экватор
    • Северный полюс мира
    • Южный полюс мира
  • Слайд 11

    Через полюса проводятся большие полукруги, называемые кругами склонения, а параллельно плоскости экватора – небесные параллели.

    • Круг склонения
    • Небесная параллель
  • Слайд 12

    Положение светила в экваториальной системе координат отсчитывается по кругу склонения (склонение) и по небесному экватору (прямое восхождение). Точкой отсчета координаты служит точка весеннего равноденствия.

    • Северный полюс эклиптики
    • Южный полюс эклиптики
    • Эклиптика
    • Небесный экватор
    • Наклонение эклиптики
    • Точка весеннего равноденствия



  • Назад Вперёд

    Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

    Цель урока: познакомить учащихся со звездными координатами, привить навыки определения этих координат на макете небесной сферы.

    Оборудование : видеопроектор, макет небесной сферы

    Ход урока

    Учитель: С незапамятных времен люди выделяли на звездном небе отдельные группы ярких звезд, объединяли их в созвездия, присваивая им названия, в которых отражали быт и особенности своего мышления. Так поступали древнекитайские, вавилонские, египетские астрономы. Многие названия созвездий, используемые нами сегодня, пришли из Древней Греции, где они складывались на протяжении столетий.

    Таблица 1 Хроника названий

    На конгрессе Международного астрономического союза в 1922 году количество созвездий было уменьшено до 88. Тогда же были установлены существующие нынче границы между ними.

    Следует особо выделить. Что соседство звезд в созвездиях кажущееся, так их видит наблюдатель с Земли. На самом деле звезды отстают друг от друга на большие расстояния, а для нас их видимость как бы проецируется на небесную сферу – воображаемый прозрачный шар, в центре которого находится Земля (наблюдатель), на поверхность которой проецируются все светила так, как их видит наблюдатель в определенный момент времени из определенной точки пространства. Презентация.Cлайд 1

    Причем звезды в созвездиях различные, они отличаются видимыми размерами и светом. Наиболее яркие в созвездиях звезды обозначают буквами греческого алфавита по убыванию (a, b, g, d, e и т.д.) блеска.

    Такую традицию ввел Алессандро Пикколомини (1508 – 1578 гг/), а закрепил Иоганн Байер (1572–1625).

    Потом Джон Флемстид (1646–1719) в пределах каждого созвездия обозначил звезды порядковым номером (например, звезда 61 Лебедя). Звезды с переменным блеском обозначают латинскими буквами: R, S, Z, RR, RZ,AA.

    Теперь мы рассмотрим, как определяется расположение светил на небе.

    Представим себе небо в виде гигантского глобуса произвольного радиуса, в центре которого находится наблюдатель.

    Однако, тот факт, что одни светила расположены ближе к нам, а другие дальше на глаз не улавливается. Поэтому предположим, что все звезды находятся на одинаковом расстоянии о наблюдателя – на поверхности небесной сферы . Презентация.Cлайд 1

    Так как звезды в течение суток изменяют свое положение, можно сделать вывод о суточном вращении небесной сферы (это объясняется вращением Земли вокруг своей оси). Небесная сфера вращается вокруг некоторой оси PP` с востока на запад. Ось видимого вращения сферы – это ось мира. Она совпадает с земной осью или параллельна ей. Ось мира пересекает небесную сферу в точках P – северный полюс мира и P`- южный полюс мира . Вблизи северного полюса мира расположена Полярная звезда (a Малой Медведицы). С помощью отвеса определим вертикаль и изобразим ее на чертеже. Презентация.Cлайд 1

    Это прямая ZZ` называется отвесной линией . Z – зенит , Z`- надир . Через точку О – пересечения отвесной линии и оси мира – проведем прямую перпендикулярную ZZ`. Это NS – полуденная линия (N-север , S – юг) . В направлении вдоль этой линии отбрасывают тень предметы, освещаемые Солнцем в полдень.

    По полуденной линии пересекаются две взаимно перпендикулярные плоскости. Плоскость перпендикулярная отвесной линии, которая пересекает небесную сферу по большому кругу – это истинный горизонт . Презентация.Cлайд 1

    Плоскость, перпендикулярная истинному горизонту, проходящая через точки Z и Z`, называется небесный меридиан .

    Мы нарисовали все необходимые плоскости, теперь введем другое понятие. Расположим на поверхности небесной сферы произвольно звезду М, проведем через точки Z и Z` и М большой полукруг. Это – круг высоты или вертикал.

    Мгновенное положение светила относительно горизонта и небесного меридиана определяется двумя координатами: высотой (h) и азимутом (A). Эти координаты называют горизонтальными .

    Высота светила – это угловое расстояние от горизонта, измеряется в градусах, минутах, секундах дуги в пределах от 0° до 90°. Еще высоту заменяют равноценной ей координатой – z – зенитным расстоянием .

    Вторая координата в горизонтальной системе А – угловое расстояние вертикала светила от точки юга. Определяется в градусах минутах и секундах от 0° до 360°.

    Обратите внимание, как изменяются горизонтальные координаты. Светило М в течение суток описывает на небесной сфере суточную параллель – это круг небесной сферы, плоскость которой перпендикулярна оси мира .

    <Отработка навыка определения горизонтальных координат на небесной сфере. Самостоятельная работа учащихся>

    При движении звезды по суточной параллели самая наивысшая точка подъема называется верхняя кульминация. Двигаясь под горизонтом светило, окажется в точке, которая будет являться точкой нижней кульминации. Презентация.Cлайд 1

    Если рассмотреть путь выбранной нами звезды, то можно заметить, что она является восходящее – заходящей, но существуют незаходящие и не восходящие светила. (Здесь - относительно истинного горизонта.)

    Рассмотрим изменение вида звездного неба в течение года. Эти изменения не так заметны для большинства звезд, но они происходят. Существует звезда, у которой положение довольно сильно изменяются, это Солнце.

    Если провести плоскость через центр небесной сферы и перпендикуляр оси мира PP`, то эта плоскость пересечет небесную сферу по большому кругу. Этот круг называется небесный экватор. Презентация.Cлайд 2

    Этот небесный экватор пересекается с истинным горизонтом в двух точках: востока (Е) и запада (W). Все суточные параллели расположены параллельно экватору.

    Теперь проведем круг через полюсы мира и наблюдаемое светило. Получился круг – круг склонения. Угловое расстояние светила от плоскости небесного экватора, измеренное вдоль круга склонения, называется склонением светила (d). Склонение выражается в градусах, минутах и секундах. Так как небесный экватор делит небесную сферу на два полушария (северное и южное), то склонение звезд северного полушария могут изменяться от 0° до 90°, а южного полушария – от 0° до -90°.

    Склонение светила – это одна из так называемых экваториальных координат .

    Вторая координата в этой системе – прямое восхождение (a). Она аналогична географической долготе. Отсчет прямого восхождения ведут от точки весеннего равноденствия (g). В точке весеннего равноденствия бывает Солнце 21 марта. Прямое восхождение отсчитывается вдоль небесного экватора в сторону противоположную суточному вращению небесной сферы. Презентация.Cлайд 2 . Прямое восхождение выражается в часах, минутах и секундах времени (от 0 до 24 ч) или в градусах, минутах и секундах дуги (от 0° до 360°). Так как при движении небесной сферы положение звезд относительно экватора не изменяется, то экваториальные координаты используются для создания карт, атласов и каталогов.

    Еще издревле было замечено, что Солнце движется среди звезд и описывает полный круг за один год. Этот круг древние греки назвали эклиптикой , что сохранилось в астрономии до сих пор. Эклиптика наклонена к плоскости небесного экватора под углом 23°27`и пересекается с небесным экватором в двух точках: весеннего равноденствия (g) и осеннего равноденствия (W). Всю эклиптику Солнце проходит за год, в сутки оно проходит 1°.

    Созвездия, через которые проходит эклиптика, называют зодиакальными . Каждый месяц Солнце переходит из одного созвездия в другое. Увидеть созвездие, в котором в полдень находится Солнце, фактически невозможно, так как оно затмевает свет звезд. Поэтому на практике в полночь мы наблюдаем зодиакальное созвездие, которое выше всех находится над горизонтом, и по нему определяем то созвездие, где в полдень находится Солнце (рис № 14 учебника Астрономия 11).

    Не следует забывать, что годичное движение Солнца по эклиптике – есть отражение действительного движения Земли вокруг Солнца.

    Рассмотрим на модели небесной сферы положение Солнца и определим его координаты относительно небесного экватора (повторение).

    <Отработка навыка определения экваториальных координат на небесной сфере. Самостоятельная работа учащихся>

    Домашнее задание.

    1. Знать содержание параграфа 116 учебника Физика-11
    2. Знать содержание параграфов 3, 4 учебника Астрономия -11
    3. Подготовить материал по теме “Зодиакальные созвездия”

    Литература.

    1. Е.П.Левитан Астрономия 11 класс – Просвещение, 2004 г.
    2. Г.Я.Мякишев и др. Физика 11 класс – Просвещение, 2010 г.
    3. Энциклопедия для детей Астрономия – РОСМЭН, 2000 г